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Abstract

The isotropic, unified state variable theory based on overstress consisting of a flow law and two tensor-valued and

two scalar-valued stress-like state variables is extended to finite deformation. To this end the Cauchy stress rate and the

rates of the two tensor-valued state variables are interpreted as Eulerian tensors. Their objective rates are based on the

recently proposed logarithmic spin [Acta Mech. 124 (1997) 89] and on the fact that the logarithmic integration of the

rate of deformation tensor results in the Hencky strain [Acta Mech. 124 (1997) 89]. The rate of deformation is equal to

the sum of the elastic (the rate form of Hooke�s law) and the inelastic rate of deformation, which depends on the
overstress. Computational procedures are derived for the one-step forward gradient and the backward Euler methods.

Numerical experiments show that no oscillations are observed in simple shear and that the integration of the elastic rate

of deformation exhibits proper elastic behavior. Other numerical experiments show nonlinear rate sensitivity and the

absence of strain rate history effects.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Xiao et al. (1997) have recently introduced an objective logarithmic co-rotational rate, referred to as the

logarithmic rate in the sequel. Using this logarithmic rate they have demonstrated that the logarithmic rate

of the Hencky strain lnV is exactly the rate of deformation tensor. They have further shown that the

Hencky strain is the only strain tensor that has this property. These observations suggest the possibility of

formulating a state variable theory on the basis of an Eulerian description and the logarithmic rates. These

ideas are adopted in the present work to develop an isotropic, finite deformation viscoplasticity theory

based on overstress (FVBO). This constitutive model has been implemented in ABAQUS; and among

others, it has been used to simulate simple shear, free-end torsion and strain rate change tests. A hypoelastic
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formulation employs the logarithmic stress rate. The inelastic rate of deformation is a function of the

overstress, the difference between the stress and the equilibrium stress, which is a state variable of the

theory. Repositories for isotropic and kinematic hardening are provided. Numerical experiments that have

been conducted include:

(1) The calculation of the energy expended around a closed cycle with zero inelastic rate of deformation.

No dissipation is found.

(2) Calculation of the responses in simple shear. No oscillations of the stress–strain curves are found.

(3) Calculation of the response for free-end torsion, the Swift Effect. The computed responses compare well

qualitatively and quantitatively with experiments for monotonic loading. For loading and unloading

the correspondence is not as good due to the isotropic nature of the FVBO.

(4) By comparing the responses to the same loading conditions for the Jaumann rate, the beneficial effects
of the logarithmic rate become apparent.

In this work a basic theory for a finite deformation, isotropic Eulerian approach is introduced. Such a

framework is used as a basis for developing a finite deformation viscoplasticity theory based on overstress,

FVBO. It is well known that viscoplastic constitutive models are difficult to integrate numerically due to

their stiffness. Two methods are presented: (i) a one-step forward gradient approximation, (Peirce et al.,

1984), and (ii) an unconditonally stable implicit integration scheme based on the backward Euler method.

The updated Lagrangian formulation is adopted in the formulation of the kinematics.
2. Constitutive model

The constitutive model is formulated in rate form using the Eulerian tensors Cauchy stress, r, and the

rate of deformation, D; and their deviators s and din, respectively. It is generalized from the small strain

version by introducing the rate of deformation and objective derivatives of the stress and all stress like state

variables. The objective derivative chosen here is the co-rotational, logarithmic derivative introduced by
Xiao et al. (1997). It will be shown below that the logarithmic rate and the logarithmic derivative have

desirable properties. As in the small strain model the total rate of deformation can be viewed as the sum of

the elastic and of the inelastic parts. This is not a kinematic statement, but a constitutive postulate on the

rate of deformation.

The inelastic deformation rate depends on the overstress, the difference between the stress and the

equilibrium stress deviators, o ¼ s� g. An overstress invariant or equivalent overstress C ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
o : o

q
is

introduced, which is useful as is the unit tensor n ¼
ffiffi
3
2

q
o
C, which points in the direction of the inelastic rate

of deformation. The extension of the small strain theory (Krempl, 1996) leads to the elastic and the inelastic
contribution as
De ¼ L�1 : r̂log ð1Þ

and
Din ¼ 3

2
D
in s� g

C
¼

ffiffiffi
3

2

r
D
in
n ð2Þ
It is readily seen that Eq. (2) is deviatoric.

The total rate of deformation is given by adding Eqs. (1) and (2)
D ¼ ðL�1 : r̂logÞ þ
ffiffiffi
3

2

r
D
in
n ð3Þ
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In the above the quantity L�1 is the elastic, isotropic compliance tensor and D
in ¼ C

Ek½C� is the effective

inelastic strain rate from which the inelastic path length can be obtained by integration �ein½t� ¼
R t D

in½s�ds.
The viscosity function k½C� is a positive, decreasing function of C and controls the rate sensitivity, i.e. the

spacing of the stress–strain diagrams at different loading rates when plastic flow is fully developed.

The logarithmic rate of any symmetric Eulerian tensor G is defined as
bGlog ¼ _GþGXlog � XlogG ð4Þ

where a superposed dot denotes the material derivative, and Xlog is the logarithmic spin that can be

explicitly calculated by algebraic expressions, see Eqs. (42)–(49) of Xiao et al. (1997). The calculation is in

terms of W, the skew spin tensor, the rate of deformation tensor D, and the left Cauchy–Green tensor B.

It is important to note that the isotropic FVBO law does not require a separate stress or strain-space

formulation. Referring to Eq. (3), it is seen that the second term of the right-hand side depends only on the
present stress deviator and the equilibrium stress deviator (a possible dependence on the drag stress is not

implemented in the flow law Eq. (3)). No strain measure is used in the formulation. The left-hand side and

the first term on the right hand sides are rate terms. A fixed increment of D or r̂log is used in the first step to

calculate the stress or strain increment. (To complete the formulation, the growth laws of the state variables

are necessary and will be introduced later in this paper.) At the end of the incremental step the total stress

(total strain) are known and become the initial conditions for the subsequent step. The solution is then

established by many increments.

For the solution of boundary value problems the incremental time stepping is performed for a finite
element integration point. Finite element procedures then augment this to solve actual boundary value

problems.

For later use the inverted form of Eq. (3) is derived as
r̂log ¼ L : De ¼ L : ðD�DinÞ ¼ L : D�
ffiffiffi
6

p
lD

in
n ð5Þ
where l is the shear modulus.
The evolution equation for the deviatoric part of Cauchy stress can be written as
ŝlog ¼ 2lðd� dinÞ ¼ 2ld�
ffiffiffi
6

p
lD

in
n ð6Þ
The evolution equation for the equilibrium stress deviator is assumed to be of the form (Krempl, 1996)
ĝlog ¼ w
E
ŝlog
�

þ o

jðCÞ �
C

jðCÞ
ðg� fÞ

A

�
þ 1

�
� w

E

�
f̂ log ð7Þ
E is Young�s modulus and the positive, decreasing shape function, w, controls the transition from the initial

quasi-elastic behavior and the fully established inelastic flow. The kinematic stress, f is a tensorial state

variable of FVBO introduced to model the monotonic work hardening. A is the rate-independent isotropic
stress, a scalar state variable of FVBO. The evolution equation of the kinematic stress, f, is taken as
f̂ log ¼ Etd
in ð8Þ

Et ¼
2

3

Et
1� Et

E

� 	 : ð9Þ
Et is the terminating slope of the uniaxial stress/strain curve at maximum strain of interest.

The isotropic stress, A, could be assumed to evolve according to
_A ¼ AcðAf � AÞDin ð10Þ
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with initial value
Aðt ¼ 0Þ ¼ A0: ð11Þ
A0, Ac and Af are material constants. The evolution of the state variable A allows the modeling of cyclic

hardening or softening behavior. We note that (8) has the same form as the Prager kinematic hardening law

in rate-independent plasticity theory, hence f has been named the kinematic stress.

Following Yao and Krempl (1978) the material functions w and j are given by
wðCÞ ¼ a1 þ ða2 � a1Þ expð�a3CÞ ð12Þ
and
jðCÞ ¼ b1 1

�
þ C
b2

��b3

: ð13Þ
In (12) and (13), a1, a2, a3, b1, b2 and b3 are material constants and they can be determined from experiments

specified by Yao and Krempl (1978), Krempl and Yao (1987), Maciucescu et al. (1999) and Tachibana and

Krempl (1998).

The positive, decreasing, nonzero viscosity function j½C� was adopted from viscoelasticity theory. In

viscoplasticity the flow function F ½CD� and the scalar drag stress D, are well known. The relation between F
and j functions can be obtained from Eq. (3) to yield D

in ¼ C=Ej½CD� ¼ F ½CD�. It is deduced that the flow
function F ½CD� is positive, increasing and that F ½0� ¼ 0. The frequently used power law satisfies these con-
ditions. The two approaches are equivalent. These modifications are used by Tachibana and Krempl (1998)

to reduce the number of constants from 18 to 10. It was proposed by Maciucescu et al. (1999) who modeled

monotonic and cyclic motions of solder with good success.

After studying the set of equations and the role of the shape function w Majors and Krempl (1994a)

suggested to employ two separate shape functions �w1 and
�w so that
ĝlog ¼ �w1ŝ
log þ F ½C=D�E�w o

C

�
� g� f
Aþ bC

�
þ ð1� �w1Þf̂ log ð14Þ
The functions are limited by 06 �w1 < 1 and �w > 0. They can be functions of the overstress or can be

constants. We have recently used two shape constants, �w1 and
�w with success. This split-up was sufficient

for our modeling needs. If �w1 ¼ 0, elastic hardening cannot be modeled. The quantity �w > 0 affects the

transition from quasi-elastic behavior to the established flow stress region where the tangent modulus is

small compared to the elastic modulus.

Further constitutive equations are reported by Ho and Krempl (2001a) and include formulations that

model inelastic compressibility. The dimensionless factor b in Eq. (16) of Ho and Krempl (2001a,b,c) is zero
for ‘‘normal’’ VBO that models positive rate sensitivity. Setting b < �1, b ¼ �1, bP � 1 produces neg-

ative, zero and positive rate sensitivity, respectively. Details can be found in Ho and Krempl (2000,

2001b,c).

The isotropic, finite viscoplasticity continuum model is experiment based and is able to represent

nonlinear creep, relaxation and nonlinear loading rate sensitivity (see Tachibana and Krempl, 1998;

Maciucescu et al., 1999; Majors and Krempl, 1994b; Ho and Krempl, 2000, 2001a,b,c).

In addition, the model can be applied to cyclic loading. The inelastic incompressible constitutive

equation consists of the flow law in two forms. In Eq. (3) the stress is the independent variable; its easily
inverted form is found in Eq. (5). Aside from two elastic constants the flow law contains the overstress (o)

and the scalar flow function F , as well as the scalar valued drag stress D. The Cauchy stress deviator tensor
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and the equilibrium stress deviator (g) control the inelastic flow through the overstress (o), which is the

difference s� g. The growth of the equilibrium stress is affected by the growth of the scalar isotropic stress

(A) and by the growth of the drag stress (D). The isotropic and drag stress must always be positive. The
FVBO model with constant isotropic and drag stresses produces, for a constant loading rate, responses
akin to isotropic/kinematic hardening in plasticity. The isotropic stress has the same function in plasticity

as in FVBO. It models the cyclic hardening or softening according to the postulated growth of A. FVBO
can also represent nonlinear creep, relaxation and rate sensitivity. In FVBO there are no yield surfaces no

loading/unloading conditions. There are no exactly linear elastic regions, only points at which the slope is

equal to the elastic modulus, then s� g ¼ 0, which implies that either s 6¼ 0 and s� g ¼ 0 or s ¼ g ¼ 0.

The model is competent to reproduce quasi-linear elastic regions, such as the unloading/reloading curves in

the simulation of uniaxial tests, see Krempl (1996), Figs. 7 and 8 and Figs. 11 and 12. While there is no

strain measure apparent, the integration of the rate of deformation using the unique logarithmic spin
results in the Hencky strain lnV, which together with the Cauchy stress forms a work conjugate pair (Xiao

et al., 1997).
3. Integration of constitutive equations

Within the context of displacement based finite element formulation, the time integration of the con-

stitutive equations for a material point can be cast as an initial value problem.
Denoting the time at the beginning of the increment by tn and the time at the end of the increment by

tnþ1, given the value of r; g; f;A; din at the time tn, and D at time tnþ1, determine the values of r; g; f;A; din at
the time tnþ1.
The procedure of Reed and Atluri (1983) is used to enforce the incremental objectivity of the integration

scheme. The integration of (4), for Cauchy stress, results in (Reed and Atluri, 1983)
rnþ1 ¼ Qnþ1rnQ
T
nþ1 þQnþ1

Z tnþ1

tn

QðnÞTr̂logðnÞQðnÞdn
� �

QT
nþ1: ð15Þ
The objective, generalized midpoint rule for (15) can be written as
rnþ1 ¼ Qnþ1rnQ
T
nþ1 þ DtQnþ1Q

T
nþhr̂

log
nþhQnþhQ

T
nþ1 ð16Þ
where Qnþ1 is given by
Qnþ1 ¼ expðDtX
Þ ð17Þ
and
X
 ¼ Xlog tnþ1
2

� �
ð18Þ
The tensor function expðDtX
Þ has the representation (Schwerdtfeger, 1961)
expðX
DtÞ ¼ Iþ ðsinxDtÞX þ ð1� cosxDtÞ �X2 ð19Þ

where the normalized tensor �X is given by
X ¼ X


x
ð20Þ
and
x2 ¼ ðX

12Þ

2 þ ðX

13Þ

2 þ ðX

23Þ

2
: ð21Þ
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3.1. Explicit integration scheme

Following Sham and Chow (1999), a one-step forward gradient method will be used for integrating the

material response. For generally good accuracy, h in (16) is set to 1
2
and (16) reduces to (Reed and Atluri,

1983)
rnþ1 ¼ �r þ DtHr̂
log

nþ1
2

HT ð22Þ
where
H ¼ ðQnþ1Þ1=2 ð23Þ
and
�r ¼ Qnþ1rnðQnþ1ÞT: ð24Þ

A similar expressions for the equilibrium stress and kinematic stress can be obtained as
gnþ1 ¼ �gn þ DtHĝlog
nþ1

2

HT ð25Þ

fnþ1 ¼ �fn þ DtHf̂ log
nþ1

2

HT ð26Þ
where
�gn ¼ Qnþ1gnðQnþ1ÞT ð27Þ

�fn ¼ Qnþ1fnðQnþ1ÞT: ð28Þ

Let D�ein be the increment of the accumulated inelastic equivalent strain, i.e.
D�ein ¼ �einnþ1 � �einn : ð29Þ
Employing a linear interpolation in time to approximate D�ein, one gets
D�ein ¼ Dt ð1
�

� gÞDin

n þ gD
in

nþ1

�
; ð30Þ
where
06 g6 1: ð31Þ

For g ¼ 0, (30) reduces to the explicit Euler formula. For other values of g in the above range, (30) rep-
resent an implicit scheme since D

in

nþ1 is not known a priori and an iterative algorithm is required.

The details can be found in Gomaa (2000). Box 1 describes the steps employed. The expressions for the

one-step integration formula are
ŝlog ¼ 2lQtans : d� 2lfn ð32Þ

f̂ log ¼ EtQ : dþ Etfn ð33Þ

ĝlog ¼ w
E
ŝlog þ 1

�
� w

E

�
f̂ log þ

ffiffiffi
2

3

r
wðaðn : dÞ þ fÞ

ffiffiffi
2

3

r
n

 
þ ðg� fÞ

A

!
: ð34Þ
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Box 1. Algorithm for the explicit integration scheme
(i) Given incr. displ. Du, calculate DtD and update F

DtDnþ1
2
:¼ sym

oDunþ1
oxnþ1

2

 !

dnþ1
2
:¼ Dnþ1

2
� 1

3
ðDnþ1

2
: IÞI

Fr :¼ Iþ
oDunþ1
oxn

Fnþ1 :¼ FrFn
(ii) Compute the rotation tensor Qnþ1 and rotate the state forward

�rn :¼ Qnþ1rnðQnþ1ÞT

�gn :¼ Qnþ1gnðQnþ1ÞT

�fn :¼ Qnþ1fnðQnþ1ÞT

(iii) Compute the overstress, C and n

�sn :¼ �rn �
1

3
ð�rn : IÞI

on :¼ �s� �g

Cn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
on : on

r
nn :¼

ffiffiffi
3

2

r
on

Cn

(iv) Compute Q, Qtan
s and Din

Q :¼ annn � nn
Qtans :¼ I� Q

Din :¼ Qdnþ1
2
þ fnn

(v) Compute r̂log, f̂ log and ĝlog

r̂log :¼ L : Dnþ1
2
� 2lfnn

f̂ log :¼ EtQ : dnþ1
2
þ Etfnn

ĝlog :¼ w
E
ŝlog þ 1

�
� w

E

�
f̂ log þ

ffiffiffi
2

3

r
wnðanðnn : dnþ1

2
Þ þ fnÞ

ffiffiffi
2

3

r
nn

 
þ ð�gn � �fnÞ

An

!
(vi) Update the stress and the internal variables

rnþ1 :¼ �rn þ Dtr̂log

fnþ1 :¼ �fn þ Dtf̂ log

gnþ1 :¼ �gn þ Dtĝlog

Anþ1 :¼ AcðAf � AnÞD
in

n
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The symmetric fourth-order tensor Qtan
s is given by
Qtan
s ¼ I� Q: ð35Þ
The fourth-order tensor Q is defined as
Q ¼ an� n ð36Þ
where
a ¼
ffiffiffi
3

2

r
DtP

g
n
dC
dC

ð37Þ
and I is the fourth-order, symmetric identity tensor. Cauchy stress, equilibrium stress and kinematic stress

can be updated using (22), (25) and (26). One notes, however, that all tensors are evaluated at time tn except
the rate of deformation tensor D, which is evaluated at tnþ1

2
.

3.1.1. Material Jacobian matrix

In this section the material Jacobian matrix required for the finite element formulation, consistent with
the integration algorithm obtained in the previous section, will be derived.

Eq. (22) can be written as
rnþ1 ¼ �r þ Drnþ1: ð38Þ

Using (32), Drnþ1 can be approximated by
Drnþ1 ¼ 2lQtans : D�

�
� 1

3
ðD� : IÞI

�
þ KðD� : IÞI� 2lfn ð39Þ
where K is the bulk modulus, I is the second-order identity tensor and D� is given by
D� ¼ DtD: ð40Þ

Only the operator oDrnþ1

oD� will be considered here. For simplicity the subscript nþ 1 is dropped. Taking the

partial derivative of (39) with respect to D�, results in the material Jacobian matrix
oDr

oD�
¼ 2lQtan

s � 2l
3

�
� K

�
I� I: ð41Þ
3.2. Implicit integration scheme

In this section, the backward Euler method will be used to integrate the FVBO constitutive equations.

The integration algorithm is similar to that developed by Sham (1994) for infinitesimal strain, thermal

VBO. The equations is written at the time tnþ1 and the backward Euler method will be used to integrate the
rates. For backward Euler method, h is set to 1 in (16) and it reduces to
rnþ1 ¼ �r þ Dtðr̂logÞnþ1 ð42Þ
where
�r ¼ Qnþ1rnQ
T
nþ1: ð43Þ
As in the explicit case the details are omitted, but Box 2 lists the necessary steps. Details are found in

Gomaa (2000).
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Box 2. Algorithm for the implicit integration scheme
(i) Given incr. displ. Du, calculate DtD and update F

DtDnþ1 :¼ sym
oDunþ1
oxnþ1

� �
dnþ1 :¼ Dnþ1 �

1

3
ðDnþ1 : IÞI

Fr :¼ Iþ
oDunþ1
oxn

Fnþ1 :¼ FrFn
(ii) Compute the rotation tensor Qnþ1 and rotate the state forward

�rn :¼ Qnþ1rnðQnþ1ÞT

�gn :¼ Qnþ1gnðQnþ1ÞT

�fn :¼ Qnþ1fnðQnþ1ÞT

(iii) Solve the nonlinear equation F ðCnþ1Þ ¼ 0 for Cnþ1
(iv) Compute D

in

nþ1, D
in
nþ1 and nnþ1

D
in

nþ1 :¼
Cnþ1

Ejnþ1

Din
nþ1 :¼

3

2
D
in

nþ1
Onþ1

Cnþ1

nnþ1 :¼
ffiffiffi
3

2

r
Onþ1

Cnþ1

(v) Update the stress and the internal variables

rnþ1 :¼ r
 �
ffiffiffi
6

p
lDtD

in

nþ1nnþ1

gnþ1 :¼
1

C1

ðg
 þ C2nnþ1Þ

fnþ1 :¼ �fn þ
ffiffiffi
3

2

r
EtDtnnþ1
The material Jacobian matrix has been derived. It is required for the finite element formulation, consistent
with the implicit integration algorithm obtained in the previous section (Gomaa, 2000). It is noted that the

formulation of the material Jacobian matrix does not affect the accuracy of the solution; however, an

operator that is consistent with the integration algorithm is essential to maintain the quadratic rate of

convergence of the iterative method used to solve the nonlinear finite element equations (Simo and Hughes,

1998).

The Jacobian matrix is given in Gomaa (2000) and is not cited here for the sake of brevity.
4. Numerical examples

The isotropic FVBO theory has been implemented as a material subroutine (UMAT) in the com-
mercial finite element program ABAQUS (HKS, 1995) Both the forward gradient and the implicit



Table 1

Material constants for FVBO

Constant Value

E 1.95E5 MPa

m 0.30

Et 5.00E2 MPa

Ac 10

Af 2.15E2 MPa

A0 1.15E2 MPa

a1 7.90E4 MPa

a2 1.83E5 MPa

a3 0.08 (MPa)�1

b1 3.14E5 s

b2 60.00 MPa

b3 21.98
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integration schemes are available. The material subroutine has been used, within ABAQUS, to solve

some boundary value problems. Table 1 summarizes the material properties used for all the numerical

experiments.

4.1. Comparison with ODE solution and the influence of step size

In these series of calculations, the finite element solution based on one element is compared with the

numerical solution as obtained from the ordinary differential equation solver LSODA (Hindmarsh, 1983).

The first comparison is for the case of plane strain axial tension. A constant engineering strain rate,
_e ¼ 10�4=s, was imposed and the finite element solution was obtained using both the forward gradient and
the implicit integration methods. For the forward gradient method, several time step sizes Dt

t0
¼ 0:5, Dt

t0
¼ 0:2

and Dt
t0
¼ 0:1 were tried and for the implicit integration scheme a uniform time step of Dt

t0
¼ 10 was used. The

reference time t0 is taken as
r0
E_e, where r0 is the yield stress in tension.

The true stress versus the logarithm of the stretch k (the true strain) curves for both the forward gradient
finite element and the ODE solutions are shown in Fig. 1. Fig. 2 shows the implicit finite element and the

ODE solutions. As seen from the figures, the forward gradient integration scheme requires very small time
Fig. 1. Comparison between the results from the ordinary differential equation solver LSODA and the forward gradient, finite element

solutions with different step sizes for the case of uniaxial tension.



Fig. 2. Comparison between the results from the ordinary differential equation solver LSODA and the implicit backward Euler finite

element solutions for the case of uniaxial tension.
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steps, however, the implicit integration gives good agreement with the ODE solution using a time step that

is hundred times larger than the steps recorded for the forward gradient integration. This, clearly, shows the

advantage of the implicit integration over the forward gradient integration scheme.

The second comparison is for the case of simple shear. The finite element solution was obtained using the
implicit integration method with uniform time step size Dt

t0
¼ 16. The true stress versus the nominal shear

strain curves for both the finite element and ODE solutions are shown in Figs. 3 and 4. As seen from the

figures, the finite element solutions compare well with the ODE solutions. The finite element solution

coincides with the ODE solution in the limit even when the time step size Dt
t0
becomes very small.
Fig. 3. Comparison between the results from the ordinary differential equation solver LSODA and the backward Euler finite element

solutions for the case of simple shear.



Fig. 4. Comparison between the ordinary differential equation solver LSODA and the backward Euler finite element solutions for the

case of simple shear.
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4.2. Strain rate sensitivity

To demonstrate the capability of the finite element formulation to capture the strain rate sensitivity, a

plane strain finite element model was subjected to the following strain-rate history. The strain rate was kept

at _e ¼ 10�5=s then increased to _e ¼ 10�1=s and finally returned back to _e ¼ 10�5=s.
Fig. 5 shows the true stress plotted versus the logarithm of the stretch k (the true strain) for this case.

Note, the stretch is continuous upon a jump in strain rate. The yield-point-like overshoots/undershoots are

a part of the (FVBO) predictions and can be affected by changing the constant a3 in Eq. (12) or equivalently
in Eq. (14). The figure shows that the strain rate sensitivity is captured. No strain rate history effect is

modeled.
Fig. 5. Axial tension; strain rate sensitivity.



S. Gomaa et al. / International Journal of Solids and Structures 41 (2004) 3607–3624 3619
4.3. Axial cyclic loading

A plane strain finite element was subjected to uniaxial cyclic loading with strain control to simulate the

cyclic effect. The true-strain rate alternated between ±10�4/s as the material was cycled in true-strain range
()0.4, 0.4). One cycle was simulated. The graph of true-stress r11 versus the true-strain lnðkÞ is shown in
Fig. 6. The sharp transition from the predominantly elastic to inelastic behavior is due to the scale. Note

that the strain range is 0.8 and the chosen Et is comparatively large.
4.4. Simple shear

Figs. 7 and 8 show the stresses obtained for the simple shear problem using the Jaumann, the

Green–Naghdi and the logarithmic rates. In contrast to the Jaumann rate, the logarithmic rate and the
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Fig. 6. Axial cyclic loading; r11 versus lnðkÞ for nominal strain rate _e ¼ �10�4=s.

Fig. 7. Simple shear; normalized true stress r11=l versus shear strain.



Fig. 8. Simple shear; normalized true stress r12=l versus shear strain.

3620 S. Gomaa et al. / International Journal of Solids and Structures 41 (2004) 3607–3624
Green–Naghdi rate do not exhibit an oscillatory response. This is one of the desirable properties of the

logarithmic rate.
4.5. Free-end torsion

The purpose of this example is to study the behavior of a hollow cylinder subjected to a free-end torsion

to see if FVBO can simulate the behavior observed by Swift (1947).

A hollow cylinder with 1.0 in. outside diameter, 0.9 in. inside diameter and 1 in. in length is meshed using

8-noded hexahedral 3D elements. A prescribed rotation is applied to the top nodes of the finite element

mesh and equal and opposite rotation is applied to the bottom ones. The applied rotation is reversed to
simulate torque reversal.
Fig. 9. Free-end torsion; deformed mesh for the case with a plug. Maximum shear strain c ¼ 3:0.



Fig. 10. Free-end torsion; axial strain versus shear strain for the cases with and without a plug.
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At about shear strain equal to 1.0 the cylinder became highly distorted. To suppress these distortions a

rigid cylinder is added to the model to simulate a rigid plug. The inside nodes of the hollow cylinder are

allowed to slide along the surface of this plug without penetrating it. Fig. 9 depicts the deformed mesh after
the plug had been used.

Fig. 10 shows the graphs of the unplugged and plugged cases together. It is seen that for both tests the

unloading branch almost coincides with the loading branch but there is no cusp at the reversal points,

which is seen in real experiments by Swift (1947).

As seen from the figures, the ‘‘backtracking’’ of the shear strain versus axial strain curves at torque

reversals seen in experiments (Swift, 1947), is not modeled. This result is expected (see Majors and Krempl,

1994a,b), since the modeling of ‘‘backtracking’’ requires repository for texture induced anisotropy. It

cannot be reproduced quantitatively by isotropic formulations using a backstress and appropriate spins
alone. These observations would suggest that the developing of texture causes a change in anisotropy,

which must be accounted for the modeling the ‘‘backtracking’’ (see Majors and Krempl, 1994b; Boehlke,

2001; Boehlke et al., 2003; Colak, 2001).
5. Discussion

5.1. Simple shear numerical experiments

The backward Euler implicit time integration scheme is shown to be efficient for the isotropic FVBO.

The resulting stress–strain curves are smooth and free of oscillations and compare favorably with the curves
obtained from ODE solver LSODA (Hindmarsh, 1983). Use of the forward gradient method resulted in

oscillatory behavior at time steps about 100 times smaller than used in the implicit scheme, see Fig. 1.

When the FVBO theory was used to determine its response to simple shear, no oscillations were observed

for the newly developed objective logarithmic stress rate (see Xiao et al., 1997). The usual oscillatory

behavior is found when the Jaumann rate is used, see Figs. 7 and 8. The co-rotational Green–Naghdi rate

yields a tensile response close to that of the logarithmic rate. In the shear response the Green–Naghdi rate

grows without bounds at shear strains larger than 1.5. It appears that the logarithmic rate yields non-

oscillatory response in simple shear that remains bounded. The use of the rate of deformation, the loga-
rithmic rate and the Hencky strain lnV suggests itself.
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It has been shown in Xiao et al. (1997) that the rate of deformation is equal to the logarithmic rate of

Hencky strain, which is based on the left stretch tensor V. The Hencky strain is the only strain that has this

property. In this work, it has been shown that the use of the objective logarithmic rate produces no

oscillations in simple shear, thus avoiding the criticism leveled at the Jaumann rate. Using the logarithmic
rate form of Hooke�s law, Gomaa (2000) has demonstrated that no dissipation takes place when strained in
a closed path, see Figs. 11 and 12. This result is preferable to the one obtained with the Jaumann rate which

leads to dissipation (see Kojic and Bathe, 1987; Pinsky et al., 1983).

The above demonstrates that the fundamental objections against hypoelastic Eulerian approach are no

longer true and that the logarithmic time derivative has eliminated the objectionable oscillations in simple

shear found with other objective rates.

The modeling of the unloading behavior for the free-end torsion was not very successful. This result had

been expected since the present formulation is isotropic only. Models which represent the deformation
induced anisotropy exist and these models show the change in anisotropy and the change in axial length

with reasonable accuracy (see Boehlke, 2001; Boehlke et al., 2003; Gomaa, 2000; Colak, 2001).
Fig. 11. Residual axial stresses versus normalized displacement in a closed elastic cycle.

Fig. 12. Residual shear stresses versus normalized displacement in a closed elastic cycle.



S. Gomaa et al. / International Journal of Solids and Structures 41 (2004) 3607–3624 3623
5.2. The new method based on logarithmic rate

The use of the logarithmic rate has eliminated three objections that were leveled against the Eulerian

method with the Jaumann rate (see Simo and Hughes, 1998, p.275). They are: ‘‘The hypoelastic nature of
the stress response renders the model questionable on fundamental grounds, and limits its applicability to

small elastic strains. . .’’ (Simo and Hughes, 1998, p. 275). It has been shown by Xiao et al. (1997), that using
the co-rotational logarithmic rate, and the rate form of the isotropic Hooke�s law involving the rate of

deformation D and the Cauchy stress r, the relation D ¼ 1þm
E r̂log � m

E ðtrr̂logÞI can be integrated to yield the
finite hyperelastic law lnV ¼ 1þm

E r � m
E ðtrrÞI, where E and m are the constant elastic modulus and Poisson�s

ratio, respectively (see Xiao et al., 1997; Bruhns et al., 1999). They demonstrate that an objective co-

rotational rate of the Hencky strain lnV is exactly identical with the rate of stretching. Of all strain mea-

sures only lnV has this property.
‘‘. . . limits its applicability to . . . small elastic strains . . .’’ (Simo and Hughes, 1998, p. 275). This property

is not true for the isotropic rate form of Hooke�s law cited above. No restriction on the magnitude of the

Hencky strain lnV exists any more.

‘‘The choice of the kinematic hardening law has become a somewhat controversial issue because of

results . . .’’ (Simo and Hughes, 1998, p. 271). The results referred to are the oscillatory behavior in simple
shear, which are shown not to occur for the logarithmic rate as demonstrated in Figs. 7 and 8.
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